Step by step: reconstruction of terrestrial animal movement paths by dead-reckoning
نویسندگان
چکیده
BACKGROUND Research on wild animal ecology is increasingly employing GPS telemetry in order to determine animal movement. However, GPS systems record position intermittently, providing no information on latent position or track tortuosity. High frequency GPS have high power requirements, which necessitates large batteries (often effectively precluding their use on small animals) or reduced deployment duration. Dead-reckoning is an alternative approach which has the potential to 'fill in the gaps' between less resolute forms of telemetry without incurring the power costs. However, although this method has been used in aquatic environments, no explicit demonstration of terrestrial dead-reckoning has been presented. RESULTS We perform a simple validation experiment to assess the rate of error accumulation in terrestrial dead-reckoning. In addition, examples of successful implementation of dead-reckoning are given using data from the domestic dog Canus lupus, horse Equus ferus, cow Bos taurus and wild badger Meles meles. CONCLUSIONS This study documents how terrestrial dead-reckoning can be undertaken, describing derivation of heading from tri-axial accelerometer and tri-axial magnetometer data, correction for hard and soft iron distortions on the magnetometer output, and presenting a novel correction procedure to marry dead-reckoned paths to ground-truthed positions. This study is the first explicit demonstration of terrestrial dead-reckoning, which provides a workable method of deriving the paths of animals on a step-by-step scale. The wider implications of this method for the understanding of animal movement ecology are discussed.
منابع مشابه
Improvement of the Effective Components in the PDR Positioning Method Based on Detecting the User’s Movement Mode Using Smartphone Sensors
The purpose of this paper is to evaluate and improve the accuracy of indoor positioning using smartphone sensors based on Pedestrian Dead Reckoning (PDR) method. In some specific situations, such as fires or power outages that disable infrastructure-based positioning techniques, using PDR method based on smartphone sensors that perform positioning continuously is a good solution.This paper focu...
متن کاملA path reconstruction method integrating dead-reckoning and position fixes applied to humpback whales
BACKGROUND Detailed information about animal location and movement is often crucial in studies of natural behaviour and how animals respond to anthropogenic activities. Dead-reckoning can be used to infer such detailed information, but without additional positional data this method results in uncertainty that grows with time. Combining dead-reckoning with new Fastloc-GPS technology should provi...
متن کاملAn Evaluation of Infrastructure-free and Infrastructure-based Indoor Positioning Methods with the Focus on Pedestrian Dead Reckoning
The expansion of location-based services (LBS) and their applications has led to a growing interest in localization, which can be done on the smartphone platform. Various positioning techniques can be used for indoor or outdoor positioning. Indoor positioning systems have been one of the most challenging technologies in location-based services over the past decade. Considering the increase of p...
متن کاملOn Higher Ground: How Well Can Dynamic Body Acceleration Determine Speed in Variable Terrain?
INTRODUCTION Animal travel speed is an ecologically significant parameter, with implications for the study of energetics and animal behaviour. It is also necessary for the calculation of animal paths by dead-reckoning. Dead-reckoning uses heading and speed to calculate an animal's path through its environment on a fine scale. It is often used in aquatic environments, where transmission telemetr...
متن کاملAccelerometer Based Joint Step Detection and Adaptive Step Length Estimation Algorithm Using Handheld Devices
—The pedestrian inertial navigation systems are generally based on Pedestrian Dead Reckoning (PDR) algorithm. Considering the physiological characteristics of pedestrian movement, we use the cyclical characteristics and statistics of acceleration waveform and features which are associated with the walking speed to estimate the stride length. Due to the randomness of the pedestrian hand-held ha...
متن کامل